
a different serde 
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serde: 
SERialize/DEserialize
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two parts:
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frontend: 
for rust types
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backend: 
the wire format
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everyone uses serde
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postcard uses serde
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YOU should keep using 
serde
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serde has some 
problems

Self-Directed Research



sometimes I wonder if  
I could do better...
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...at least for what 
postcard needs.
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how serde works:
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The serde data model: 
29 different “types”
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primitive types like 
u8, i16, f32, ... 
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arrays like  
&str, [T], [u8], ... 
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composite types like    
struct, tuples
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enums and their 
variants 
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the frontend turns 
Rust types 

into Data Model types  
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the backend turns 
Data Model types 

into bytes  
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the visitor pattern 
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types are given a 
Serializer 
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each Data Model Type 
has a serializing 

method 
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s.serialize_u8(u8) 
s.serialize_str(&str) 

...
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this drives the 
backend 
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this code is 
*usually* derived 
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#[derive(Serialize)]
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there are some 
problems 
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this generates a LOT 
of code 

Self-Directed Research



Self-Directed Research



there’s a LOT of 
monomorphization and 

inlining 
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the visitor pattern 
is recursive 

Self-Directed Research



for deserialization: 
data returned by 

value 
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for postcard: more 
flexibility than we 

need

Self-Directed Research



how else do we 
approach this 

problem?
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postcard-forth
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https://github.com/jamesmunns/postcard-forth/



postcard-forth
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https://github.com/jamesmunns/postcard-forth/
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how postcard-forth 
works:
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keep (mostly) the 
same data model
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a much simpler 
derive macro
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ONLY generate a list 
of field offsets and 
function pointers
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for this data:
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instead of ~this:
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generate ~this:
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or maybe even ~this:
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turn ser/de into a 
"stack machine"
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the input is the list 
of offsets and 

functions
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the output is the 
stream of serialized 

bytes
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this is basically an 
interpreter
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and forth says 
"data is code"
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why is this good?
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there is only ever 
ONE ser/de machine
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it's an explicit 
stack machine: 
bounded depth
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initial testing shows 
it's USUALLY faster
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initial testing shows 
it's USUALLY smaller 
(code and binary)
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for deser: 
we could do it 

totally *in-place*
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why is this NOT good?
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requires ANOTHER 
derive trait for 

every type
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the ser/de engine is 
WILDLY UNSAFE
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manually implementing 
the traits is 
WILDLY UNSAFE
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we still need SOME 
code to get to 

Data Model Types
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especially for 
iterators, or non-

deref types
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we need a whole RFC 
for new enum 
abilities
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https://github.com/rust-lang/rfcs/pull/3727



it's not quite a 
linear program...
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...we need 
"branching" for enums

Self-Directed Research



...we need "loops" 
for slices and iters
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is it worth it?
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no idea yet.
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