
a different serde 

Self-Directed Research



serde: 
SERialize/DEserialize

Self-Directed Research



two parts:

Self-Directed Research



frontend: 
for rust types

Self-Directed Research



backend: 
the wire format

Self-Directed Research



everyone uses serde

Self-Directed Research



postcard uses serde

Self-Directed Research



YOU should keep using 
serde

Self-Directed Research



serde has some 
problems

Self-Directed Research



sometimes I wonder if  
I could do better...

Self-Directed Research



...at least for what 
postcard needs.

Self-Directed Research



how serde works:

Self-Directed Research



The serde data model: 
29 different “types”

Self-Directed Research

1



primitive types like 
u8, i16, f32, ... 

Self-Directed Research

1



arrays like  
&str, [T], [u8], ... 

Self-Directed Research

1



composite types like    
struct, tuples

Self-Directed Research

1



enums and their 
variants 

Self-Directed Research

1



the frontend turns 
Rust types 

into Data Model types  

Self-Directed Research

1



the backend turns 
Data Model types 

into bytes  

Self-Directed Research

1



the visitor pattern 

Self-Directed Research

2



types are given a 
Serializer 

Self-Directed Research

2



each Data Model Type 
has a serializing 

method 

Self-Directed Research

2



s.serialize_u8(u8) 
s.serialize_str(&str) 

...

Self-Directed Research

2



this drives the 
backend 

Self-Directed Research

2



this code is 
*usually* derived 

Self-Directed Research

3



#[derive(Serialize)]

Self-Directed Research

3



Self-Directed Research

3



3



there are some 
problems 

Self-Directed Research



this generates a LOT 
of code 

Self-Directed Research



Self-Directed Research



there’s a LOT of 
monomorphization and 

inlining 

Self-Directed Research



the visitor pattern 
is recursive 

Self-Directed Research



for deserialization: 
data returned by 

value 

Self-Directed Research



for postcard: more 
flexibility than we 

need

Self-Directed Research



how else do we 
approach this 

problem?

Self-Directed Research



postcard-forth

Self-Directed Research

https://github.com/jamesmunns/postcard-forth/



postcard-forth

Self-Directed Research

https://github.com/jamesmunns/postcard-forth/

EXP
ERI

MEN
TAL



how postcard-forth 
works:

Self-Directed Research



keep (mostly) the 
same data model

Self-Directed Research

1



a much simpler 
derive macro

Self-Directed Research

2



ONLY generate a list 
of field offsets and 
function pointers

Self-Directed Research

2



for this data:

Self-Directed Research

2



Self-Directed Research

2



instead of ~this:

Self-Directed Research

2



Self-Directed Research

2



generate ~this:

Self-Directed Research

2



Self-Directed Research

2



or maybe even ~this:

Self-Directed Research

2



Self-Directed Research

2



turn ser/de into a 
"stack machine"

Self-Directed Research

3



the input is the list 
of offsets and 

functions

Self-Directed Research

3



the output is the 
stream of serialized 

bytes

Self-Directed Research

3



this is basically an 
interpreter

Self-Directed Research

3



and forth says 
"data is code"

Self-Directed Research

3



why is this good?

Self-Directed Research



there is only ever 
ONE ser/de machine

Self-Directed Research



it's an explicit 
stack machine: 
bounded depth

Self-Directed Research



initial testing shows 
it's USUALLY faster

Self-Directed Research





initial testing shows 
it's USUALLY smaller 
(code and binary)

Self-Directed Research



Self-Directed Research



for deser: 
we could do it 

totally *in-place*

Self-Directed Research



why is this NOT good?

Self-Directed Research



requires ANOTHER 
derive trait for 

every type

Self-Directed Research



the ser/de engine is 
WILDLY UNSAFE

Self-Directed Research



manually implementing 
the traits is 
WILDLY UNSAFE

Self-Directed Research



we still need SOME 
code to get to 

Data Model Types

Self-Directed Research



especially for 
iterators, or non-

deref types

Self-Directed Research



we need a whole RFC 
for new enum 
abilities

Self-Directed Research

https://github.com/rust-lang/rfcs/pull/3727



it's not quite a 
linear program...

Self-Directed Research



...we need 
"branching" for enums

Self-Directed Research



...we need "loops" 
for slices and iters

Self-Directed Research



is it worth it?

Self-Directed Research



no idea yet.

Self-Directed Research


