
fasterthanlime for Self-Directed Research

A somewhat reasonable use of dynamic linking

Fixing build times with rubicon



building large rust 
projects is slow. 

why?



lots to parse 
lots to typecheck 
lots to borrowcheck 
lots to codegen 
lots to optimize 
lots to link



incremental builds 
are not enough 

why?



not incremental enough 
proc macros aren't cached 
static linking takes time (hundreds of MBs) 
LTO takes time 
there's simply a lot of work 

note: other build systems do it better (bazel/buck/etc.)



crate-type = "dylib" 
does not help much 

why?



still "one big graph" (1graph) 
lots of work for no-op builds 

(cool on-disk hashtable though)



"prefer-dynamic" 
compiler picks boundaries 

(docs were wrong for 4 years)



crate-type = ["rlib", "dylib"] 
dependencies need to opt-in 

(all of them)



monomorphization = 
change app, rebuild libtokio 

(libtokio contains all instantiations of its generics. TODO: fact check.)



the fix? 
compose smaller projects 

pick your own boundaries



trivial for CLI binaries 
trivial for HTTP servers 
trivial for GRPC 
trivial for IPC (SHM etc.) 
real tricky for dlopen



why tricky?



no stable ABI 
globals duplication (that one's hard)



A starts a tokio runtime 
calls into B 
B says "there's no runtime" 
they're both right



it gets trickier



A installs tracing subscriber 
B, C, D's log events go nowhere



A installs panic handler 
B, C, D panics don't call it



A passes tokio runtime handle 
B, C, D hang forever!



parking_lot has globals = 
the wrong thread gets 

awakened



8 weeks of debugging 
mostly memory corruption + hangs 

(...last 2 were a tokio bug)



rubicon 
= import/export globals 

(across shared objects: libfoo.so, libbar.so etc.)



globals are 
• thread-locals 
• process-locals (statics)



how does it work? 
source-level patching 

(all deps need to play nice, too!)



patches ready for: 
• parking_lot 
• tokio 
• tracing 
• eyre 
(just wrapping statics / thread-locals with macros)



README goes into 
specific set-up 

 
(app + librubicon_exports.so + mods)

http://librubicon_exports.so


I'm having fun working 
on my site again



I'm able to ship lots of 
small changes



Untouched modules keep their 
docker layer = fast deploys



future steps?



rubicon is a "polyfill" 
let's kill it 

e.g. -C globals-linkage=[import,export]


