what are you syncing about?



| want to talk about one of
my favorite async libraries:



mailtake-sync




comes from



the executor

Fop



'synchronization primitives”



async code is all about
waifing



sync primitives are all
about notifications



they are useful for building
data structures or drivers
or network stacks or...



has three sync primitives |
love:



WaitCell,
Wa1tQueue,
and WaitMap



holds zero or one
S



Sort of like



imitation:
doesn't work with =1 tasks



holds Q..o

S



but where do you store
those S7?



solution:
doubly linked lists



specifically:
infrusive doubly linked lists
(from the
crate)

P4 TR T P
% .'. Qe .‘. o .'.
s s 0



once you've da
you get two things:



pub trait Future {
type Output;

// Required method
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::0utput>;



0 nead mMeans we
have a stable pointer we
can (ab)use



upside: very flexible
especially on embedded!



downside: it's a doubly
linked list



is the fun oddball of the
group



instead of JUST a waker,
we also have
a Key and Value



example: async maillbox



upside: very flexible,
we don't need a bunch of
oneshot channels



downside: it's a doubly
inked list (but worse)



