
Arc<Mutex<T!>>

...and ways to avoid it

My website = 18K lines of Rust
(first commit in June 2020)

Lots of async/sync mixing
(weird tricks, not today's topic)

Typical stack: axum on tokio
(used to be tide, then warp)

tokio = thread pool
(tasks can be polled from any thread)

thread pool = Arc all the things
(tokio::spawn needs 'static, etc.)

But: do you ever free it?
If not: &'static T (via Box!::leak)

Does it ever change?
If no: Arc<T>, if yes: Arc<Mutex<T!>>

Is it write-heavy?
If no: Arc<RwLock<T!>>, if yes: Arc<Mutex<T!>>

Does it fit in an atomic?
If yes: AtomicU8 (dev vs prod environment), etc.

Is it almost a lazy_static?
But it needs a CLI arg or something? AtomicPtr

Does it change while blocking?
If not: listen up!

Implicit context is bad
Unless I'm doing it

tokio has implicit context
so does tracing-subscriber, etc.

Sometimes we must!
grass_compiler takes a function, not a closure

I used to do something awful
(process-wide locks)

Sometimes Arcs will do
(liquid templating engine, rebuilding filters)

But consider: thread-locals
You will certainly not regret it.

Easy case: owned type
LocalKey<T>

What if you want to share?
Several threads cannot own the same T

My terrible hack:
LocalKey<RefCell<Option!<*const T!!>>>

Main insight:
Nobody can mess with your thread-local while blocking

Main takeaway:
You can lend a shared reference to arbitrary blocking code!

(Show code)

