
Thread locals galore
The only thing more evil than one singleton is multiple singletons



Types of variables
● Locals (stored on the stack, or in registers)
● Heap allocations (stored on the heap)
● Statics (stored in a memory-mapped section of the executable!)

○ (process-local)

● Thread-local storage



How do thread-locals work?
Every "local" is at an offset in the "thread local storage" area

● x86_64-unknown-linux-gnu: %fs segment register
● aarch64-apple-darwin: TPIDR_EL0
● etc.

The location of the "thread local storage" area is updated whenever switching 
threads.

That's it!



Complication 1
Some types implement Drop — need to run them when the thread ends



Complication 2
Some types' initialization is not const: it needs to be evaluated at runtime



Complication matrix



Ultimately: one single interface
(Hopefully optimized!)

Doesn't matter how the underlying 
storage works.



Where are thread-locals used?
● Async runtimes

○ Need to register timers, interest in I/O events, etc.

● Anything with a "register"
○ tracing-subscriber



Sane case: single binary
Single crate, depends on tokio:

● One copy of tokio code baked into binary
● tokio's CONTEXT thread-local defined in binary



Sane case: crate-type = ["dylib"]
Some crate has type "dylib" and depends on tokio

● One copy of tokio code baked into libtokio.so
● tokio's CONTEXT thread-local defined in libtokio.so
● binary (and any other .so files) all depend on libtokio.so



My case: crate-type = ["cdylib"]
One binary crate, and several "modules", built separately as libmodfoo.so and 
libmodbar.so — loaded dynamically at startup.

● N copies of tokio code, one in each object:
○ once in binary, once in libmodfoo.so, once in libmodbar.so

● N copies of tokio's CONTEXT thread-local:
○ once in binary, once in libmodfoo.so, once in libmodbar.so



Solution: pass tokio context explicitly
Problem: not all crates accept an explicit "Executor"!

Can we just set the module's copy of tokio's CONTEXT thread-local?

Yes! Wrapper around Future that enters a runtime Handle every time.

But: spawning task that spawns a task defeats that.



Solution: patch tokio
● Define tokio's CONTEXT thread-local only once

○ In binary

● Enable external-tls feature in tokio for modules
○ …which redefines the tokio_thread_local! Macro



Solution: patch tokio
● Define TOKIO_CONTEXT in tls-slots crate (of type dylib)

● Have binary depend on tls-slots

● Allow mods to have undefined symbols with -undefined dynamic_lookup



Does it work?
Almost!

Statics ("process-local" variables) remain, and they seem to be messing with the 
multi-threaded executor.

(Workaround: spawn a future looping for 10ms in a loop — still doesn't work all the 
time)

The current_thread executor is happy though!



Next steps
● Clean up solution (remove some indirection?)
● Apply same treatment to statics / "process-locals"
● Tackle tracing-subscriber

Will this get upstreamed? Unlikely. This is a cursed scenario. But who knows.


